การพยากรณ์ดัชนีผลตอบแทนรวม SET 50

dc.contributor.advisorอัจฉรา ชีวะตระกูลกิจ
dc.contributor.authorวะชิระพงษ์ พงศ์กิจวิทูร
dc.contributor.coadvisorอภิญญา วนเศรษฐ
dc.contributor.otherมหาวิทยาลัยสุโขทัยธรรมาธิราช. สำนักบัณฑิตศึกษา
dc.date.accessioned2023-07-04T03:15:24Z
dc.date.available2023-07-04T03:15:24Z
dc.date.issued2014
dc.date.issuedBE2557
dc.descriptionวิทยานิพนธ์ (บธ.ม. (บริหารธุรกิจ))--มหาวิทยาลัยสุโขทัยธรรมาธิราช, 2557
dc.description.abstractการวิจัยครั้งนี้มีวัตถุประสงค์เพื่อ (1) พยากรณ์ดัชนีผลตอบแทนรวม SET50 (SET50 TRI) ด้วยวิธีค่าเฉลี่ยเคลื่อนที่ แบบ 3 คาบ (MA3), 5 คาบ (MA5) และ 30 คาบ (MA30) (2) พยากรณ์ดัชนีผลตอบแทนรวม SET50 (SET50 TRI) ด้วยวิธีตัวแบบเกรย์ สมการอนุพันธ์อันดับที่หนึ่งที่มีตัวแปรเดียว GM(1,1) และ (3) เปรียบเทียบและวิเคราะห์ผลการพยากรณ์ ด้วยวิธี MA3, MA5, MA30 และ GM(1,1) รูปแบบการวิจัยใช้การวิจัยเชิงประยุกต์ มีวิธีดำเนินงานโดยการใช้ข้อมูล SET50 TRI ตั้งแต่ วันที่ 2 มกราคม พ.ศ.2545 ถึงวันที่ 23 มกราคม พ.ศ.2558 แบ่งตามขนาดของข้อมูลตัวแบบพยากรณ์ขนาด 3 วัน 5 วัน และ 30 วัน ทั้งช่วงเวลาขาขึ้น – ขาลง โดยพยากรณ์ไปข้างหน้า 1 วัน 3 วัน 5 วัน 10 วัน 15 วัน 30 วัน ด้วยวิธีตัวแบบ MA3, MA5, MA30 และ GM(1,1) แล้วนำมาเปรียบเทียบผลโดยหาค่าความคลาดเคลื่อนยกกำลังสอง (Mean Square Error: MSE) ผลการวิจัยพบว่า (1) การพยากรณ์ด้วยวิธีค่าเฉลี่ยเคลื่อนที่ แบบ 3 คาบ 5 คาบ และ 30 คาบ จะสามารถพยากรณ์ไปข้างหน้าได้เพียง 1 วัน โดยต้องมีข้อมูลใหม่เข้ามาเพื่อให้สามารถพยากรณ์ได้อย่างต่อเนื่อง และเมื่อใช้ขนาดข้อมูลในการพยากรณ์จำนวนมากขึ้นจึงจะสามารถเห็นแนวโน้มได้ดี แต่ค่าพยากรณ์ที่ใช้ขนาดข้อมูลจำนวนมากขึ้นทำให้ค่าความแม่นยาจะลดลงด้วย (2) การพยากรณ์ด้วยวิธีตัวแบบเกรย์ GM(1,1) สามารถใช้ขนาดข้อมูลในการสร้างตัวแบบพยากรณ์จำนวนน้อยเพียง 3 วัน ก็สามารถที่จะพยากรณ์ไปข้างหน้าอย่างต่อเนื่อง ค่าพยากรณ์ที่ได้มีความแม่นยำดี และสามารถเห็นแนวโน้มได้ดี เมื่อใช้ขนาดข้อมูลในการพยากรณ์จำนวนมากขึ้นจะยิ่งเพิ่มความสามารถในการพยากรณ์ที่ได้ค่าความแม่นยำสูงขึ้น และบอกแนวโน้มได้ดียิ่งขึ้น (3) เมื่อเปรียบเทียบวิเคราะห์ด้วยการหาค่าความคลาดเคลื่อนยกกำลังสอง (MSE) ของค่าเฉลี่ยเคลื่อนที่และตัวแบบเกรย์ GM(1,1) พบว่า ค่า MSE ของตัวแบบเกรย์ GM(1,1) ในการพยากรณ์ไปข้างหน้า 1 วัน 3 วัน 5 วัน 10 วัน มีค่าน้อยกว่าค่า MSE ของ MA ในขณะที่เมื่อพยากรณ์ไปข้างหน้า 15 วัน 30 วัน ค่า MSE ของ MA มีค่าน้อยกว่า MSE ของ GM(1,1) ซึ่งกล่าวได้ว่าวิธีตัวแบบเกรย์ GM(1,1) มีค่าพยากรณ์ในช่วง 10 วัน มีความใกล้เคียงมากกว่าวิธีค่าเฉลี่ยเคลื่อนที่ และการพยากรณ์ช่วงหลังจาก 10 วัน ด้วยวิธีค่าเฉลี่ยเคลื่อนที่มีค่าใกล้เคียงกว่าวิธีตัวแบบเกรย์ GM(1,1)
dc.description.abstractThe objectives of this research are: (1) to study and forecast total return index of SET50 (SET50 TRI) by using moving average 3-period (MA3) 5-period (MA5) and 30-period (MA30); (2) to study and forecast SET50 TRI by using Grey Model GM(1,1); and (3) to compare the efficiency of the models. The methods of this research using SET50 TRI data from 2 January 2545 to 23 January 2558 chose period 3, 5 and 30 to forecast next 1 day, 3 days, 5 days, 10 days, 15 days, 30 days by MA3, MA5, MA30, GM(1,1) and compared by mean square error (MSE). The results reveal that: (1) MA can forecast the SET50 TRI only next one day, must using more data to forecast in long term, and can show the trend when using more data but decrease accuracy, while; (2) GM(1,1) uses only three recent data to forecast the SET50 TRI in long term, and can show the good trend when using more data and increase accuracy; and (3) compared by mean square error (MSE), the MSE of GM(1,1) to forecast next 1 day, 3 days, 5 days, 10 days are less than MSE of MA, and 15 days 30 days the MSE of MA are less than MSE of GM(1,1), in other words, forecasting in 10 days the Grey Model GM(1,1) has better accuracy than moving average and next 10 days MA has better than GM(1,1)
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/20.500.14770/12409
dc.language.isotha
dc.publisherมหาวิทยาลัยสุโขทัยธรรมาธิราช
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
dc.rights.holderมหาวิทยาลัยสุโขทัยธรรมาธิราช
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.otherมหาวิทยาลัยสุโขทัยธรรมาธิราช. แขนงวิชาบริหารธุรกิจ--วิทยานิพนธ์
dc.subject.otherมหาวิทยาลัยสุโขทัยธรรมาธิราช. สาขาวิชาวิทยาการจัดการ--วิทยานิพนธ์
dc.subject.otherตลาดหลักทรัพย์แห่งประเทศไทย
dc.subject.otherดัชนีราคาหลักทรัพย์
dc.subject.otherหุ้นและการเล่นหุ้น--อัตราผลตอบแทน
dc.subject.otherหุ้นและการเล่นหุ้น--ความเสี่ยง
dc.titleการพยากรณ์ดัชนีผลตอบแทนรวม SET 50
dc.title.alternativeSET 50 total return index forecasting
dc.typeThesis
mods.digitalOriginBorn digital
thesis.degree.disciplineวิทยาการจัดการ
thesis.degree.grantorมหาวิทยาลัยสุโขทัยธรรมาธิราช
thesis.degree.levelปริญญาโท
thesis.degree.nameบริหารธุรกิจมหาบัณฑิต

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
148987.pdf
Size:
3.31 MB
Format:
Adobe Portable Document Format
Description:
เอกสารฉบับเต็ม

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.73 KB
Format:
Plain Text
Description: