

Index

Action-rest cycles, 230 ff. Adler, Alfred, 96, 97 Alcohol wastes energy, 64 Amar, Jules, 233, 234 ATTENTION and warming up, 109 and attitudes, 109 the first step in energy transmission, 160 defined, 161 primary, 162 secondary, 164 selecting focus of, 166 energy patterns in, 167 chief disturbers of, 174 and reading, 175 day dreaming as a disturber of, 176 technique of good habits, importance of variety in, how to shift, 181 Autosuggestion, theory of, appraised, 226

Beer, how to drink it, 65
Benedict, Francis S., studies
of metabolism, 35; studies
ies of mental work, 50
Blood chemistry and energy
cycles, 84
Blood, cyclic changes of, 88
Bradford, Gamaliel, 218
BRAIN
theories of control in the

normal and abnormal, 96 ff. and energy control, 102 physiology of, 102 "brain fag", 205 Burnham's studies of men of achievement, 136 Burton, L. V., studies of solar heat and industrial conditions, 74

Calcium, importance of in diet, 60-61 Caldwell, O. H., Report on electric heating of brain

electric heating of brain, 80 Cannon, Walter B., Studies

of emotions, 90 Child, Charles M., 169 Chromatin in nervous activ-

ity, 120 Cincinnati, Heart Council of, 210

Coffee as a stimulant, 61 Compliance, importance of,

Cortical control, 104 Coué, Emile, The importance of technique of, 5, 6, 226,

Crile, Dr. George W., 96; Hypothesis of dynamics of brain, 104

Darwin, Charles, 168 da Vinci, Leonardo, 127 Day-dreaming as a disturber of attention, 176
Dexterity improved by persistence, 125
Diet requirements, 57
Dominance in crisis, 170
Dominance in crisis, 179
Drake, Robert, 279
Drive, relation of to energy, 28
Dunlap, Knight, 280
Duse, Eleanora, 235

Education, failure of, 21; and lack of training in versatility, 253 Efficiency, doubled after

training, 5; and human engineering, 135; maximum with minimum energy, 242 ff.

Einstein, Albert, 106
Embden's experiments with
phosphates, 66
Emotional cycles of workers,

82

Emotional stimuli, effects of on energy, 89

Emotions, leading to chaos, 89 ff.; as organic processes, 92; as favorable stimuli, 93

Energies, reorganization of an imperative task, 14; physiology of preliminary efforts, 115; improved with use, 116 Energizing, four major tech-

Energizing, four major techniques of, 22

ENERGY

working at full capacity, 6 the two central problems, 8

technique of the three grand divisions, 15 results of defective utilization of, 17-18 defined, 28 rule of highest efficiency of, 29

a fixed quantity, 31 retarders and accelerators of, 39

individual adjustments to determiners, 40 vocations and, 41 ff. volume as a vocational determiner, 46

high energy needed in social relations, 46 intellectual work uses little,

49
cycles, 81
flow of in neurotics and
normal people, 97
useful accelerators of, 107
direction of, 128 ff.
three kinds of leakage of,

159 ff. transmission of, 159 ff. patterns in attention, 167 flow and dominant traits,

determiners of flow, 172 achievement of straight line discharge, 177 lack of adequate outlets

for, 200
"hidden reservoirs" of, 217
effectiveness increased by
varied behavior, 224

maximum efficiency with minimum, 242 ff.

Engineers, their contribution to human adjustment, 10 Evvard, John M., experiments with hogs' diet, 55 Exercise, 69-70

FATIGUE physiological, 205 recovery from, 207
mental, 208
tensions and, 209
health and, 210
caused especially by outside activities, 215
Feet, shoes, and energy, 71
Food requirements, 52 ff.
Freud, Sigmund, 96-97

Geography, importance of study of, 257

Habits, transfer of skills and, 248
Harding, Warren G., 170-171
Health and fatigue, 210
Herrick, C. Judson, 104
Hersey, Rexford B., Studies of energy cycles, 82, 214
Herz, Dr., Experiments in rest, 240
Hill, A. V., 206, 207, 231
Hoover, Herbert, 170-171
Huxley, Aldous, 183
Hypersensitivity and energy leakage, 162

Intellectual work uses little energy, 49 Interest and persistence, 179 Interests determined by primary attention, 163

Jacobson, Edmund, studies of progressive relaxation, 268-272 James, William, 8-9, 209, 217-219 Job analysis, technique of, 128-129 Job analysis and skill, 247 Job determines the worker, 41 ff. Johns Hopkins, studies of blood cell changes, 88 Johnson, H. W., Experiments in sleep, 239 Jung, Karl, 96, 98

Kant, Immanuel, 218 Kempf, Edward J., 96 Kreidl, Dr., Experiments in rest, 240

Labor saving, 199-200
Lactic acid in fatigue, 205
Laird, Donald A., Experiments with sucrose and dextrose, 65; other studies, 277, 283
Lawrence, D. H., 183
Learning, basic problems in, 256
Learning, value of versatility in, 251
Leisure, planned, 260
Life-planning the first step, 136
Lloyd, Dr. Bolivar J., 142
Lloyd George, 168
Lost motion, 282

Machines must be paced to men, 124 Malnutrition, 53 Man power plays second fiddle to industrial power, 27 Mathematics, importance of, 257

Mayo, Dr. Charles H., 116 McCord, Dr. Carey, 211 Mencken, H. L., on beer drinking, 65 Mental energies and body

Mental energies and body temperature, 75 Mental stimulants: coffee, exercise, diet, 107-108

Mental work requires little

energy, 49; temperature, humidity and, 74

Metabolism, how measured, 35; most significant facts of, 35, 36, 37, 38; radioactivity and, 80

Molecular processes, variation of, 39

Monotony, its part in fatigue,

Moss, Fred A., experiments in sleep, 238 Muscular activity, energy

Muscular activity, energy used in, 44

Mussolini's organization of energy, 130

Nerve currents, velocity increased with temperature rises, 77

Nerve tracts, insulation of,

Night vs. day work, 87

Occupations, energy requirements of, 43; selected in terms of individual energy, 46

Pace, defined, 123; and job analysis, 128 Paderewski, Ignace Jan, 273 Patti, Adelina, 235 Peak, defined, 123 Peak performance, after warming up, 117; and lack of tensions, 166

Performance, influenced by peak and pace, 123

Persistence
importance of, 117
physiology of activity, 120
dexterity improved by, 125
interest and, 179

Perspective of action, 127 Phosphate as a stimulus, 66 Poincaré, Henri, 168 Power, defined, 28 Psychology, contribution to energy techniques, 9; im-

Psychology, contribution to energy techniques, 9; importance of study of, 257 Pulitzer, Joseph, 163

Radioactivity and metabolism, 80 Rage as a stimulus, 93 Reading and attention, 175 Relaxation through compli-

Relaxation through compliance, 227; posture in, 232; technique of, 268 ff.

REST

art of, 229 physiology of, 229 through silence, 235

Retarders and accelerators of energy, 39

Roosevelt, Franklin D., 168,

Roosevelt, Theodore, 168, 178 Rubner, Max, 199

Schools, failure of American, 253-254 Scripps, E. W., 163 Seashore, Carl E., 236 Second wind, physiology of,

Sex energy, control of, 98 ff. Sherrington, C. S., 91, 96 Skaggs, E. B., Studies of warming up, 110

Skill, art of, 246 Skills and habits, transfer of, 248

Sleep, 236 ff., 275 Social relations, high energy needed for, 47

Spurts of work, individual differences, 124

Stimuli: inner and outer, as disturbers of attention. 175, 176

Sugar, effect of on work, 65

Technology's influence on vocational education, 13 Tempo of work, 117, 123, 166, 261 TENSIONS defined, 164 relief of, 165 and fatigue, 200

will to action arouses, 227 Thinking and warming up,

Thorndike, E. L., 209 Tilney, Frederick, 102 Tobacco as an energy retarder, 108

Tunney, Gene, technique of, 114

Vacations, when to take them, 232 Variety, importance of in at-

tention, 179 Velocity of behavior a basic trait, 34

Venzke, Gene, 244, 245

Vitamin requirements, 58 ff. Vocational adjustment: the

Versatility, 182; and energy economy, 248

role of engineers and psychologists, 10-12

Vocational education, its present futility, 13 Vocational readjustment: the

problem today, 13 Vocations and energy, 41 ff. Voltaire, 235

Water, use of, 63 Will to action, 226; and tensions, 227 Wilson, Woodrow, 170-171

WORK volume varies with rate of.

diet experiments for various types of, 65 influence of temperature and humidity on, 73

cyclical form of, 81 adaptation of to energy cycles, 85-86 night vs. day, 87

and warming up to the job, importance of good begin-

nings, 114 ff. tempo of, 117, 123-28, 166,

importance of job analysis,

adjusting to cycles, 147

Yogi and reservoirs of energy, 217